

Репортажные станции

типа DriveAway ООО «Технологии Радиосвязи»

Владимир БОБКОВ, генеральный директор, ООО «Технологии Радиосвязи», к. т. н.

Николай ЗВАНЦУГОВ, технический директор, ООО «Технологии Радиосвязи», к. т. н.

Одной из последних разработок являются антенные системы 1,2, 1,5 и 18 м Ки-диапазона ТИШЖ.468331.107, -01, -02, предназначенные для обеспечения высокоскоростных каналов связи на остановках/стоянках при установке на транспортное средство – тип SNG, DriveAway (рис. 1).

Станции имеют типовое применение: передача новостей с мест событий в реальном режиме времени, трансляция спортивных матчей, связь

OOO «Технологии Радиосвязи» выпускает на сегодняшний день более 100 наименований продукции для земных станций и VSAT-терминалов.

при катастрофах и в чрезвычайных ситуациях, передвижные лаборатории (медицинские, исследовательские, геологоразведка и т. п.), связь для передвижных ремонтных бригад и т. п.

Основные преимущества станций 000 «Технологии Радиосвязи»:

- минимальное время развертывания и организации канала связи;
- автоматическое наведение на заданный спутник;
- режим поиска и идентификации спутника;
- работа в расширенном Ки-диапазоне;
- поставка в комплекте с установленным радиооборудованием.
 В состав станции входят:
- офсетная углепластиковая антенна 1,2, 1,5 или 1,8 м;

- опорно-поворотное устройство (ОПУ) ТИШЖ.301329.002, -01, -02;
- система наведения ТИШЖ.468331.029, включая блок управления АСU, блок управления приводами PDU, приемник наведения/маяка;
- навигационная система;
- радиочастотное оборудование BUC, LNB;
- модемное оборудование;
- вспомогательное оборудование. Параметры антенн приведены в табл. 1.

Механические характеристики антенн приведены в табл. 2.

Электропитание осуществляется от однофазной сети переменного тока 220 В 50 Гц. В качестве

Таблица 1 Радиочастотные/электрические характеристики				
Параметр	1,2 м	1,5 м	1,8 м	
Диапазон рабочих частот	Прием: 10,70–12,75 ГГц Передача: 13,75–14,50 ГГц			
Коэффициент усиления ПРД	42,9 дБ	45,1 дБ	46,5 дБ	
Коэффициент усиления ПРМ	41,8 дБ	43,6 дБ	45,0 дБ	
Поляризация	Линейная ортогональная V/H			
Кросс-поляризационная развязка	По оси – не менее 35 дБ Вне оси (–1 дБ) – не менее 28 дБ			
KCBH	1,25	1,25	1,25	
Температура шума при угле места: 10° 30° 50°	43 K 36 K 32 K	54 K 42 K 38 K	43 K 36 K 32 K	
Ширина ДН (-3 дБ), ПРД	1,20°	0,97°	0,74°	
Ширина ДН (-3 дБ), ПРМ	1,46°	1,13°	0,87°	
Проходящая мощность	Не менее 1 кВт (порт ПРД)			
Развязка ПРД-ПРМ	Не менее 85 дБ			
Интерфейс	WR75			

www.connect.ru

Таблица 2 Механические характеристики				
Параметр	1,2 м	1,5 м	1,8 м	
Тип антенны	Офсетная			
Диапазон перемещений: по азимуту по углу места по поляризации		+/-180 0180 +/-90		
Скорость перемещений: по азимуту по углу места по поляризации	0.012 град/с 0.012 град/с 1 град/с			
Macca	105 кг	120 кг	128 кг	

двигателей применяются шаговые двигатели.

Навигационная система обеспечивает выдачу параметров, необходимых для реализации наведения: азимут, координаты, крен, тангаж, время.

Условия эксплуатации наружного оборудования:

- температура -40 до +50 °C;
- влажность до 100%;
- скорость ветра рабочая до 20 м/с (72 км/ч), порывы – до 97 км/ч;
- скорость ветра без разрушения до 216 км/ч.

Условия эксплуатации внутреннего оборудования

- температура от -10 до +50 °С;
- влажность до 80% при 25 °C. Возможны следующие опции и доработки по согласованию с заказчиком:
- ручной пульт управления антенной (ПУА);
- основание для установки на требуемое транспортное средство;
- установка усилителя мощности или BUC;
- доработка кабельных трасс (РЧ, ПЧ, М&С, данные) под конфигурацию заказчика.

Принципы построения СНА

В состав СНА входят следующие элементы:

- шаговые двигатели (азимут, угол места, поляризация):
- датчики углового положения (азимут, угол места, поляризация);
- навигационная система;
- концевые выключатели;
- датчики складывания/раскладывания антенны;
- блок управления антенной БУА ACU ТИШЖ.467119.111;
- блок управления двигателями БУПР PDU ТИШЖ.468383.011;
- формирователь сигнала наведения. При необходимости идентификации космического аппарата дополнительно в состав СНА входят:
- аппаратура идентификации по информационным сигналам;
- аппаратура идентификации по сигналам маяка.
 Режимы работы СНА:
- автоматическое раскладывание/ складывание;
- ручной режим;
- программное наведение (по целеуказаниям);
- поиск автоматический (по заложенному алгоритму) поиск сигнала наведения (КА), например по прямоугольной спирали;
- автосопровождение (экстремальный автомат);
- автоматическая подстройка поляризации по максимуму сигнала;
- наведение «одной кнопкой» из сложенного положения, задав КА, нажатием одной кнопки АС наводится на спутник автоматически;
- идентификация спутника.

Специально для работы в составе систем наведения станций данного класса разработан блок БУА АСU ТИШЖ.467119.111 (рис. 2).

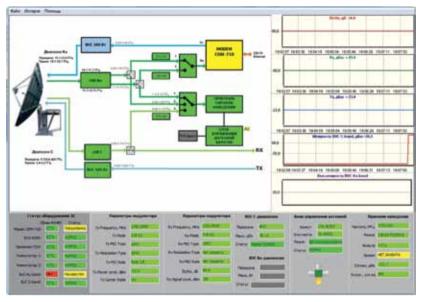
Его основные отличительные особенности:

- спецвычислитель исполнен на базе промышленного РС;
- OC Windiws, Linux.
 - Основные функции блока ACU:
- обработка информации от БУПР;
- обработка информации сигнала наведения;
- обработка информации от навигационной системы;
- реализация алгоритмов наведения. Спецвычислитель обеспечивает:
- получение и обработку навигационных данных от навигационной системы;
- вычисление АЗ и УГМ с учетом поправочных коэффициентов;
- получение и обработку ЦУ от внешних устройств;
- контроль и управление аппаратурой идентификации КА;
- контроль и управление дополнительной аппаратурой (при необходимости) — LNB, BUC, модем, переключатели и т. п.

Аппаратура отображения и ввода/ вывода информации (может быть исполнена на базе консоли) обеспечивает интерфейс «человек – машина».

Блок ACU ТИШЖ.467119.111 является универсальным и может использоваться для антенн различных диаметров и диапазонов частот:

- соединение с блоком БУПР PDU осуществляется одним кабелем RS485 или Ethernet (опция);
- не зависит от типов и мощностей установленных на антенне двигателей – асинхронные/шаговые.


Блок АСИ ТИШЖ.467119.111 имеет большой 7" информативный экран с разрешением 1280х800, на котором отображается важная информация для оператора станции, значительно облегчающая его работу:

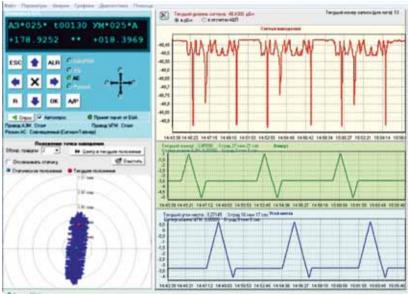

- визуализация процессов наведения – работа приводов, уровни сигналов, «восьмерка» КА, «улитка» в режиме поиска и др.;
- отображение мнемосхемы комплекса с постоянным контролем состояния аппаратуры и параметров;

Рис. 2. Внешний вид блока БУА АСU ТИШЖ.467119.111

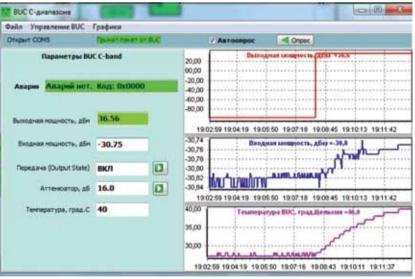


Рис. 3. «Окна» СПО БУА АСИ ТИШЖ. 467119.111

- отображение графиков основных сигналов;
- отображение спектра принимаемых сигналов (опция встроенного анализатора спектра).

Возможные варианты окон СПО показаны на рис. 3.

Высокая производительность ACU обеспечивает реализацию всех алгоритмов работы CHA — для наклонных орбит, с запоминанием орбиты и коррекцией ее по экстремальному автомату, программное наведение по запомненной таблице и т. д.

Кроме того, обеспечивается возможность контроля и управления других блоков станции – LNB, BUC, модемов, коммутаторов, преобразователей частоты и др.

БлокБУПРРОИТИШЖ.468383.011 выполняет следующие основные функции:

- сбор информации от периферийных устройств датчики углового положения, концевые выключатели, энкодеры и т. п.;
- управление приводами.

Функциональная схема системы наведения для антенн типа DriveAway показана на рис. 4.

Идентификация спутника может осуществляться по информационным каналам и сигналам маяка. Для этого формируются два файла: один для наведения и идентификации по информационным сигналам, другой — для идентификации по сигналам маяка. Перед первоначальным наведением оператор выбирает требуемый режим работы СНА.

В режиме «Идентификация по информационным сигналам» СПО СНА выполняет алгоритм, который, в частности, включает загрузку параметров конфигурации в демодуляторы (частота, модуляция, кодирование, коэффициент кодирования, информационная скорость, скрэмблирование), наведение антенны в вычисленное направление (азимут и угол места), контроль параметров демодулятора, при появлении сигнала переводит СНА в режим «Экстремальный автомат», производит подстройку по максимуму сигнала и переходит в режим «Автосопровождение», выдает сигнал оператору, что поиск и наведение проведены успешно.

www.connect.ru

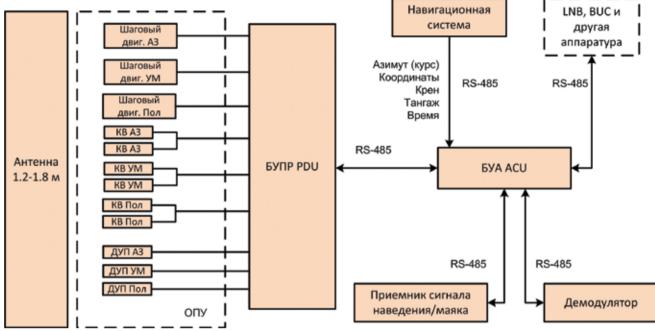
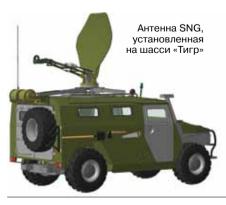


Рис. 4. Функциональная схема СНА

В режиме «Идентификация по сигналам маяка» СПО СНА выполняет алгоритм, который, в частности, включает загрузку параметров конфигурации в приемник сигнала наведения (частота, режим работы по полосе, режим поиска, режим ФАПЧ, коэффициент усиления), наведение антенны в вычисленное направление (азимут и угол места), контроль параметров приемника наведения – уровень сигнала и захват ФАПЧ, при появлении сигнала переводит СНА в режим «Экстремальный автомат», производит подстройку по максимуму сигнала и переходит в режим «Автосопровождение», выдает сигнал оператору, что поиск и наведение проведены успешно.

В целом данная схема реализации СНА имеет следующие преимущества:

 гибкость в использовании навигационной системы – навигационная


- система может быть заменена, модернизирована без изменения аппаратных средств СНА, модернизируется только СПО;
- гибкость в использовании средств идентификации КА и демодулятор, и приемник сигнала наведения/маяка могут быть заменены более современными (т. е. проведена модернизация) без изменения аппаратных средств СНА, модернизируется только СПО;
- повышенный ресурс работы антенной системы за счет использования шаговых двигателей;
- упрощение построения схемы СНА – путем применения не инкрементальных, а абсолютных датчиков углового положения;
- повышенная точность наведения, обеспечивающая работу до

Ка-диапазонов включительно, — благодаря установке абсолютных датчиков углового положения 16 или 18 разрядов;

возможность контроля и управления не только аппаратурой системы наведения, но и всем комплексом аппаратуры станции с одного APM — промышленный PC с СПО обеспечивает подключение по интерфейсам M&C разнообразного оборудования станции (LNB, BUC, модемы, преобразователи частоты и т. п.) и контроль и управление всем комплексом аппаратуры.

Более подробно ознакомиться с оборудованием можно на сайте www.rc-tech.ru.

Интернет-магазин для серийной продукции **www.rc-comm.ru**

